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Abstract 

Stepwise methods are quite common to be reported in empirically based journal articles 

(Huberty, 1994). However, many researchers using stepwise methods failed to realize that 

software packages had been programmed in error. The purpose of this study is to introduce 

the procedure of stepwise regression and used experiments and Venn diagrams to illustrate 

the three main problems of stepwise regression: wrong degree of freedom, capitalization on 

sampling, and error R2 not optimized. Meanwhile, the study also depicted an alternative 

method: All-possible-subsets regression and used an experiment to illustrate how to use it in 

real complex study. Finally, some matters needing attention when using both automatic 

procedures are discussed. 

Keywords: Stepwise Regression, Degree of Freedom, Sampling Error, R2, All-possible 
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Introduction 

 One of common problems in regression analysis is to make the decision in selecting 

variables. Researchers usually utilize or manipulate numbers of predictor variables in 

research and they are trying to create a best-fit model with a relatively smaller subset of 

predictors. During the process of building the model, researchers could try many 

combinations based on theories. However, it should be noteworthy that the entire process 

may take a considerable amount of time. 

 As one of commonly-used approaches in variable selection, the stepwise method is 

often reported in empirically based journal articles (Huberty, 1994). As a fact, 260 academic 

journal papers (peer reviewed) after 1994 can be found in EBSCOhost Online Research 

Databases by using the key words of "stepwise regression". Although the stepwise is 

extensively utilized in selecting variables, the step procedure in commonly-sued software 

packages is programmed with errors. In this case, in spite of the prevalence of stepwise 

methods in variable selection, the results or outcomes from the stepwise method may not be 

appropriate. 

 In the present paper, we firstly argue for the procedure of stepwise regression and 

three major problems in stepwise procedure with examples and Venn diagrams, then, 

illustrate the problem caused by collinearity in stepwise. In addition, we also introduce the 

all-possible-subsets analysis as an alternative of selecting variables and illustrate how to use 

all-possible-subsets analysis.  

What is stepwise regression? 

 Stepwise regression aims to select a model step by step, adding or deleting one 

predictor only based on the statistical significance. The result of this process is a single 

regression model. Stepwise analysis has either forward or backward progression. The forward 

progression is more commonly encountered than backward analysis. Nowadays, researchers 

can control details of the process, including the significance level and variable manipulation 

(e.g., add or remove) in statistical software programs, such as Minitab and Statistical 

Software (Frost, 2012). 

 Taking forward stepwise regression as an example, firstly, the stepwise process 

computes all bivariate r2 values for all independent variables and dependent variable. Then, it 

selects the independent variable with the largest r2. At the second stage, the remaining 

independent variables will be added in the model separately with the “best” single 
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independent variable and the stepwise will select the independent variable that yield the 

largest increase in R2. At the third stage, the stepwise regression will evaluate the 

contributions of remaining variables to the model with the best single variable and the second 

"biggest contribution" variable. Following the same rule, the variable, which can yield the 

largest increase in R2 with the two selected predictors, can be chosen as the third predictor. 

 The forward selection procedure in the commonly-used statistical packages will stop 

when the increase in R2 from one step versus the R2 in the previous step is not statistically 

significant. It should be noteworthy that, over the course of selecting variables, stepwise 

process utilizes the equation (Fcalculated=[(RLarger
2 - RSmall

2)/(kL-kS)]/[(1-RLarger
2)/(n-kL-1)]) to 

test the null hypothesis H0: RLarger
2=RSmall

2. Specifically, kL is the number of predictors used to 

obtain RLarger
2, and kS is the number of predictors used to obtain RSmaller

2. The degrees of 

freedom are (kL-kS)for the numerator, and (n-kL-1) for the denominator (Thompson, 2006). 

Therefore, the sample size plays an essential role in calculating Fcalculated value on the above 

null hypothesis. In other words, researchers may evaluate the same Delta R2 with the same 

number of stepwise procedures but get different pcalculated value based on different sample 

sizes (Thompson, 2006). 

Why Stepwise Regression Do Not Work: Three Problems 

 Criticisms of the stepwise method has been given by increasing numbers of scholars 

 (e.g., Huberty, 1989, 1995; Snyder, 1991, Thompson, 1989, 1995, 2001). The first major 

problem of the stepwise procedure is the fact that commonly-used statistical program 

packages choose the wrong degrees of freedom in their statistical tests, providing incorrect 

Fcalculated  and pcalculated. The second major problem is that stepwise multiple regression 

packages tend to capitalize on small amount of sampling error, thus, offering the final model 

with different selected variables. The third major problem is that stepwise multiple regression 

packages cannot yield the best predictor set for a given size.  

Wrong Degree of Freedom 

 Commonly-used statistical packages utilize incorrect degrees of freedom to calculate 

the mean square (MS), F value and p value in stepwise regression. According to Walker 

(1940), the number of degrees of freedom is equal to the number of observations minus the 

number of necessary relations obtaining among these observations. In other words, the 

number of degrees of freedom is equal to the number of original observations minus the 

number of parameters estimated from them (Walker, 1940).  
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 Based on the definition of degree of freedom, dftotal is n-1 (n is the number of sample 

size) in the stepwise regression analysis; dfregression is the number of variables that stepwise 

has entered; and dfresidual equals dftotal minus regression degrees of freedom (Thompson, 2006). 

Therefore, dfregression is the number of predictor variables in a given study. However, stepwise 

regression has special procedures being mentioned in the first section to select variables into 

the model. In the selection process after the first step, all remaining variables are separately 

entered into the model and the predictor which yields the largest R2 is selected. As Thompson 

(2006) noted, software should charge for 1 degree of freedom for every predictor "tasted", 

regardless of how many predictors are ultimately retained in the analysis. 

 Table 1 presents a heuristic example regarding the wrong degree of freedom. 

Presuming that there are 526 samples, 5 steps of forward stepwise with 50 predictor variables, 

and an R2 of 10%. The computer packages use the incorrect degree of freedom 5, and pcalculated 

is 0.022 (statistically significant). However, when the correct degree of freedom should be 50, 

the pcalculted is 0.369 (not statistically significant). Thus, this problem easily causes Type I 

errors (Cliff, 1987). 

Table 1. Stepwise NHSST for Hypothetical Example 

 

Analysis/source SOS df MS Fcalculated pcalculated R2 

Incorrect       

Regression 100.0 5 20.00 2.667 0.0215 10.00% 

Residual 900.0 520 7.50    

Total 1000.0 525 1.90    

 

Correct       

Regression 100.0 50 2.00 1.06 0.3686 10.00% 

Residual 900.0 475 1.89    

Total 1000.0 525 1.90    

Note: The original table (Thompson 2006, p. 273) was modified to this table 

  

Capitalization on Sampling Error 

 Based on procedures of stepwise statistical packages, the packages do not recognize 

the mistakes caused by sampling errors. Unfortunately, statistical software will select the 
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predictor that contributes more to the increase of R2 than other predictors in a given step, 

even if the difference is very small between two predictors and the difference is caused by the 

sampling error. Snyder (1991) presented a heuristic example of these dynamics on sampling 

error. 

 Any mistakes in the sequence will influence the following subsequent choices 

because stepwise regression is a linear sequence of selection based on the rules mentioned in 

the previous section and only one predictor is selected in each step. If one predictor enters 

into the model because of an infinitesimal advantage being caused by a small amount of 

sampling error, this may produce an incorrect regression model. For example, as Figure 1 

shown, the common area of Y and X1 is 80 (B+C=80) and is bigger than other X2 and X3 

variables. Thus, X1 is the first predictor in the model. However, if the difference of 

contribution to R2 between X1 and X2 is caused by sampling error, namely, X2 should be the 

first predictor in the model. Then, in stepwise regression, X2 will be the second predictor 

because X2 can contribute unique 39 to the overlap area with Y. But if the first predictor is X2, 

the second predictor should be X3 because X3 can contribute 50 to R2 and X2 is 40.  

 
Figure 1. Venn diagram on sampling error. 

 Therefore, sampling error is another important issue in the process of stepwise 

regression. Less sampling error tends to be presented in data sets involving (a) larger samples, 

(b) fewer predictor variables, and (c) larger effect sizes, as reflected in the factors involved in 

most statistical corrections for positive bias in uncorrected variance-accounted-for effect sizes 

(Snynder & Lawson, 1993, Thompson, 1990). 
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R2 Not Optimized 

 Some researchers, who did not enough understand working procedures of stepwise, 

may erroneously believe that the best predictor set of size two or more are included in the 

results of stepwise. However, the purpose of the stepwise method is to select a relatively 

smaller subset of predictors that may be almost as effective as the full set of predictors in 

yielding accurate Y_hati scores (Thompson, 2006). Most importantly, the stepwise method 

selects one predictor in each step, meanwhile, each step needs to consider the variables 

selected in the model. Nevertheless, the correct selection method should choose the best 

combination in a given set of predictors of size rather than identified a sequence of variables. 

In fact, the stepwise incremental selection standard is completely irrelevant in selecting the 

best combination. In other words, the best combination might not include the single best 

predictor, when the best single predictor is high multiply collinearity. Just as Figure 2 shown, 

stepwise regression will select X1 as the first predictor because X1 has the largest bivariate r2 

value with Yi scores (B+C+D=80). In the second step, based on the model with X1, stepwise 

regression will select X4 as the second predictor because X4 can contribute unique the area of 

15 to multiple R2. Then, given the set of predictors of size 2, the result from stepwise 

regression is the combination of X1 and X4. However, the best combination of size 2 in Figure 

1 is X2 and X3 rather than X1 and X4. The stepwise procedure defines an a posteriori order 

based solely on the relative uniqueness of variables in the sample at hand (Cohen, et al., 2003, 

p. 161).  

 
Figure 2. Venn diagram on optimized R2. 

 In Figure 2, the X1 predictor's explanatory power is presented in X2 and X3 predictors, 

namely, there is high collinearity among predictors. Cohen et al. (2003) stated, "when the IVs 

are substantially correlated with each other, the losers in the competition may not make a 
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sufficiently large unique contribution to be entered at any subsequent step before the 

problems is terminated by the absence of a variable making a statistically significant 

addition." (Cohen, et al., 2003, p.116) The sum of the common areas between Y & X1 and Y& 

X4 is 95 (80+15=95) which is smaller than the sum of the common area between Y & X2 and Y 

& X3 (10+30+10+40+10 =100).  

 Additionally, there is another possible reason that may cause “unoptimized” R2 in a 

give subset. In the process of predictor selection, stepwise packages may move previously-

entered variable out of the model in the next and all the remaining steps. Taking Figure 3 as 

an example, the area of A and E are 18 and 20 and X1 is the first variable in the model. In the 

second step, X3 will be selected and enters into the model with X1, because X3 contributes 

unique 20 to R2. In the third step, when the computer package enters the X2 into the model 

with X1 and X3, the program will delete the X1 variable in the model. In this situation, X1's 

explanatory power is presented in X2 and X3, thus, the R-square of the model with X1, X2 and 

X3 is the same to the model with X2 and X3. In other words, the model with two variables and 

the largest R2 is X2 and X3. As Figure 3 shown, X2 and X3 contribute 118 to R2, X1 and X2 

contribute 98, and X1 and X3 contribute 100. Therefore, the model with X2 and X3 has a largest 

R2 in the predictors of size 2. This supports the statement from Thompson (1995): "The true 

best set may have considerably higher effect sizes and may even include none of the variables 

selected by the stepwise algorithm."    

     
Figure 3. Venn diagram on three predictors. 

Experiment on Collinearity 

 In fact, all used examples in the above present the problem of collinearity. For 

example, X1, X2, and X3 have relatively high correlation coefficients in Figure 1. Here, 
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another heuristic example will be used to explain the problem of collinearity in stepwise 

regression. As to the situation of all predictors are completely uncorrelated, the results of 

stepwise selection are complete correct because the variables entry order is exactly 

correspond to the squared correlations of the predictors with Y. However, this case is nearly 

nonexistent in a real study.  

The data is from Teaching and Learning International Survey (TALIS) on the United 

States. The present example only selects three independent variables (efficacy in classroom 

management (ECM), efficacy in instruction (EINS), efficacy in student engagement (ESE)), 

and one dependent variable (Teacher job satisfaction (TJS)).  

Table 2. Descriptive Statistic on Variables 

 

Variables TJS ECM EINS ESE Mean SD Valid N (listwise) 

TJS 1.00    12.28 2.01 1845 

ECM .18 1.00   13.06 1.94 1845 

EINS .16 .70 1.00  12.97 1.94 1845 

ESE .25 .64 .75 1.00 11.97 2.23 1845 

 

 Based on Table 2, the valid sample size is relatively large with 1845 participants; the 

difference of mean and SD between four variable are small; and the correlation coefficient 

between predictors are relatively high (from 0.64 to 0.75). This experiment provides some 

evidence on the statement that "Probably the most serious problems in the use of stepwise 

regression programs arises when a relatively large number of IVs is used."(Cohen, Cohen, 

West, & Aiken, 2003, p. 161) 

 First of all, the output from stepwise regression is that the final model only includes 

the ESE predictor, namely, TJS_hat = 9.630 +0.222*ESE, the p value of ESE coefficient is 

0.000, and R2 is 6.1%. However, when all variables are entered into the model, the model 

equation with three variables is TJS_hat = 9.905 + 0.249*ESE -0.101*EINS + 0.069*ECM. 

Surprisingly, the p values suggest that the model is good fit the data. Moreover, the R2 

(6.45%) is 0.35% more than the stepwise regression. Table 3 shows the detailed difference 

between two methods. 
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Table 3. Results Comparison from Stepwise and Enter Regression 

 

Source Stepwise  Enter  

DV TJS TJS 

IV ESE ESE, EINS, ECM 

R2 6.1% 6.4% 

p value of IV 0.00 0.00(ESE), 0.01(EINS), 0.04(ECM) 

 

 Less sampling error tends to be presented in data sets involving: (a) larger samples, (b) 

fewer predictor variables, and (c) larger effect sizes, as reflected in the factors involved in 

most statistical corrections for positive bias in uncorrected variance-accounted-for effect sizes 

(Snynder & Lawson, 1993; Thompson, 1990). Thus, the use of stepwise methods in these 

circumstances may be somewhat less sinful. However, stepwise regression also made a 

serious mistake on this example. In order to explore the reasons for the difference between 

stepwise and enter regression on this example, commonality analysis was used to answer the 

questions: (a) how much explanatory power is unique to the first predictor (ESE) and other 

two predictors (EINS and ESM)? (b) how much explanatory power is common to both 

predictors and could be derived from either predictor? Knowing the explanatory power of 

three predictors can promote better understanding of the differences between the two methods 

on the example. 

Table 4. Coefficients Required and Unique and Commonality Components of Shared 

Variance 

 

Predictors r2 or R2 

ESE (1) 6.0527% 

EINS (2) 2.4427% 

ECM (3) 3.0668% 

ESE, EINS (1,2) 6.2338% 

ESE, ECM (1,3) 6.1070% 

EINS, ECM (2,3) 3.2924% 

ESE, EINS, ECM (1,2,3) 6.4465% 

Three independent variables 
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U1=R2(123)- R2(23)=6.4465%-3.2924%=3.1541% 

U2= R2(123)- R2(13)=6.4465%-6.1070%=0.3395% 

U3= R2(123)- R2(12)=6.4465%-6.2338%=0.2127% 

U12= R2(13)+ R2(23)- R2(3)- R2(123)=6.1070%+3.2924%-3.0668%-6.4465%= -0.1139% 

U13= R2(12)+ R2(23)- R2(2)- R2(123)=6.2338%+3.2924%-2.4427%-6.4465%=0.637% 

U23= R2(12)+ R2(13)- R2(1)- R2(123)=6.2338%+6.1070%-6.0527%-6.4465%= -0.1584% 

U123= R2(123)+R2(1)+R2(2)+R2(3)-R2(12)-R2(13)-R2(23) =6.4465%+6.0527%+2.4427% 

+3.0668%-6.2338%-6.1070%-3.2924%=2.3755% 

 

 Table 4 shows the calculating procedures of commonality analysis. The results can 

easily be plugged into a spreadsheet program to produce the output reported in Table 5. 

Noting that the sum of unique (3.15%) and the common explanatory (2.90%) partitions of 

ESE in the model with R2 (6.05%) is equal to the correlation coefficient of r2 of ESE with 

TJS (0.2462=0.0605). As Table 5 shown, there are seven non-overlapping partitions of R2 and 

the sum of seven partitions is 6.45%. However, two of seven partitions are negative numbers. 

As area-world statistics, variances theoretically have minimum value of zero (ESE and EINS, 

EINS and ECM). Therefore, there are presumably suppressor effects in the model. By 

checking βEINS (-0.098) and rEINS (0.156) from the output of the final model (Table 6), EINS 

predictor is judged to be a suppressor variable.   

Table 5. Unique and Common Components of Shared Variance (R2) 

 Predictor  

Combination 

Statistic 

Variable 

ESE EINS ECM Partition 

ESE 3.1541% 

  

3.1541% 

EINS 

 

0.3395% 

 

0.3395% 

ECM 

  

0.2127% 0.2127% 

ESE, EINS -0.1139% -0.1139% 

 

-0.1139% 

ESE, ECM 0.637% 

 

0.637% 0.637% 

EINS, ECM 

 

-0.1584% -0.1584% -0.1584% 

ESE, EINS, ECM 2.3755% 2.3755% 2.3755% 2.3755% 

Unique 3.1541% 0.3395% 0.2127% 
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Common 2.8986% 2.1032% 2.8541% 

 Total 6.0527% 2.4427% 3.0668% 6.4465% 

  

 In addition, based on the outputs of linear regression, the p values of EINS in the 

model with ESE and EINS is 0.059 and p value of ECM in the model with ESE and ECM is 

0.302. Therefore, the stepwise regression will exclude two variables based on the rules of 

stepwise. However, when the two variable of ECM and EINS are entered into the model with 

ESE, the p values of three predictors are statistical significant just because of the effect from 

the suppressor variable EINS. 

Table 6. The Output Table on The Final Model with Enter Method 

 

Model B S.E. Beta S.E. p value r rs 

Constant 9.705046 .332622   .000000   

ESE .249228 .031635 .276724 .035125 .000000 .246023 .968976 

EINS -.100719 .038964 -.097573 .037747 .009816 .156292 .615565 

ECM .068762 .033608 .066438 .032472 .040896 .175122 .689727 

 

 On the other hand, three predictors' structure coefficients are separately 0.99, 0.62, 

and 0.69. Namely, they are significant with high relations with Y_hat, even if they have high 

collinearity. In a word, the stepwise packages make a serious mistake on selecting predictors 

when variables are collinearity. As this example shown, the stepwise regression equation is 

TJS_hat=9.630+0.222*ESE, but the real regression equation is TJS_hat = 9.905 + 0.249*ESE 

-0.101*EINS + 0.069*ECM. 

 Consequently, this example provides the evidence that the collinearity between 

predictor variables certainly affects the order of entry or deletion of variable, and illustrates 

possible mistakes in predictor selection in a collinear situation. Meanwhile, this example also 

illustrates that an independent variable (EINS or ECM) with a high Pearson r with the first-

entered variables (ESE) may never be entered into the model, even if this variable is the 

second-best single variable in the independent variable set. In order to have a better 

understanding of this statement, a simple Venn diagram example is illustrated. Based on 

Figure 2, the stepwise will select predictor X1 in the model. Then, the computer package 

selects X4 variable. If the remaining variables can contribute the area more than 10, the 
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"important variable" X2 and X3 never be entered into the model because of the high 

collinearity among X1, X2, and X3, even if the variable of X2 and X3 are the best predictors in 

the real model.  

All-possible-subsets Analysis 

 Huberty (1989) noted, "A user of stepwise analysis may be led to believe that the first 

q variable entered into the analysis would constitute a good subset (of size q) of the initial set 

of p variables, or even the best subset of size q." However, the correct method should begin 

by computing the R2 for every combination of predictors for one and more variable set size. 

What is all-possible-subset regression? 

  All-possible-subsets regression runs all possible models using a different set of 

predictors, and displays models that contain one predictor, two predictors, and so on. The 

output is a number of models and their summary statistics. In addition, the result does not 

show the best model among the all models.  

	 Most importantly, all-possible-subsets regression goes beyond stepwise regression, 

testing all possible subsets of the set of predictors. For example, the number of predictor 

variables is n, then, this program runs 2n models with all subsets of predictors. For example, 

n=10, the results show 1024 models with their summary statistics. The entire analysis may 

sound tedious, but can be done rapidly, accurately, and painlessly by readily available 

computer software (Thompson, 1991). On the contrary, stepwise regression superficially 

works reasonably well as an automatic variable selection method, but the result is not 

guaranteed. Sometimes stepwise enters into a wrong turn and gets a suboptimal model (e.g., 

the above experiment).    

 When using an all-possible-regressions procedure, researchers need to select the best model 

and rank the models. Generally, researchers can draw the line plot of successive R2 values (the plots 

of R-squared versus the number of variables) to find which number of variables is diminishing returns. 

"This plot can inform the researchers' subjective judgment regarding the optimal number of predictors 

to retain." (Thompson, 2006, p. 277) In addition, researchers can search whether there are one or two 

models standing out in the output, whether there are some almost-equally-good models. This also can 

give some hints on finding the optimum model. 

However, it is a real danger of letting automated data-mining packages help 

researchers select a model without theoretical guidance and practical experience. Therefore, a 

better approach is to select the predictor set based on theory or previous empirical results, or 

based on the accessibility of the variables in a given set (Thompson, 1991).  
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Experiment on All-possible-subsets Analysis 

	 In this section, a heuristic example is used to illustrate how to use all-possible-subsets 

regression to analyze the data. The data has eight variables. Dependent variable is work 

satisfaction scores (WSQ), and independent variables are age, male, married, income, length 

of service in the current organization in years (length), total work experience in years 

(experience), total number of job changes (changes), and score on love of money scale 

(LOMS). The sample size is 375. SPSS software (syntax are shown in the appendix) is 

utilized to run all-possible analysis. All statistical results are recorded into an Excel 

spreadsheet. Figure 4 was drawn and it presents a line plot of the maximum R2 values for a 

given number of n predictors. As Figure 4 shown, the plot seems to level off after the 

predictor variables set size is 5 (R2 = 85.5% with n=5, versus R2 =86.2% with n=6). Thus, 

effect size of 85.5% can be deemed sufficient, based on the theories or previous empirical 

studies. Then, the focus turns to which five predictors should be retained for future use, 

namely, age, male, income, change, and LOWS. Moreover, through checking the others n=5 

and 6 variable set with a slightly less-than-optimal effect size might be preferred for practical 

reasons, the purpose is to make sure the rationality of the model. The R2 of model with age, 

male, income, experience, and LOMS variables is 85.3%; the R2 of model with age, male, 

married, income, change, and LOMS variables is 85.7%; the R2  of model with age, male, 

income, experience, length, and LOMS variables is 85.5%,  the R2 of model with age, male, 

income, experience, change, and LOMS variables is 86.2%. We found that the variables of 

male, income, and LOMS are included in above five models. The other age, experience, 

change, married, length variables are distributed in the other four models. Length can be 

deleted and experience can be added based on theories on job satisfaction. Therefore, the 

final model with age, male, income, experience, change, and LOMS was determined. As 

Thompson (2006) claimed, "A variant on this all-possible-subsets analysis would instead plot 

"adjusted R2" value. This alternative will be most appealing when sample size is relatively 

small because sampling error variance is likely to be larger." In addition, Derksen & 

Keselman (1992) stated, "educational and psychological researchers who use automated 

subset selection procedures should be aware of operation characteristics of these procedures." 
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Figure 4. Line plot of successive R square values. 

Conclusion 

 Although many researchers (e.g., Huberty, 1989; Snyder, 1991; Thompson, 1985, 

1989, 2001) suggested stepwise method cannot be employed in psychological and behavioral 

research, many academic papers using stepwise method are being published. The issue is that 

only researchers being aware of main problems on stepwise method can correctly use 

stepwise method as a tool to select variables in the process of building models, while many 

researchers who did not realize the weakness of stepwise are using stepwise in their studies. 

The main problems of stepwise regression include (1) statistical software used the wrong 

degrees of freedom to compute MS, (2) stepwise method is very sensitive to sampling error 

and yield non-replicable results, and (3) stepwise cannot identify the best subset of predictors. 

These possible problems give rise to unreliable results from stepwise. Meanwhile, researchers 

need to realize that the number of variables, sample size, and multicollinearity in the data 

before running stepwise regression.    

 It is noteworthy that stepwise regression could be a valuable tool in the early stages of 

building a model. However, when the procedure terminates, researchers should check the 

order in which variables were added and deleted, confirm whether or not the variables that 

were included or excluded are reasonable, and judge the model with a largest R2 based on a 

theoretical perspective. According to Huberty (1989), the order of variables entered into 

stepwise should not be used to assess relative variable contribution or importance. Likewise, 

as Cliff (1987, p. 187) stated, "in a sense all the variable are in the equation, even though 

some of them have (effectively) been given zero weights."   
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	 Although there is another alternative method: all-possible-subsets regression. It can 

assess all possible models and displays all subset results long, research reality is complex and 

an automated algorithm cannot solve all problems for researchers. Researchers can run both 

of stepwise and all-possible-subsets regressions to get the additional information that they 

need. The model that stepwise regression selected and the model with a largest R2 that all-

possible-subset regression showed may not be the best from a practical and theoretical 

perspective. Therefore, researchers need to use their professional subject area knowledge and 

common sense to analyze the output of all subset possible regression. As Kerlinger (1986, P. 

454) stated, "The research problem and the theory behind the problem (and not stepwise 

methods) should determine the order of entry of variables in multiple regression analysis." In 

a word, don't just blindly accept the computer's choice! 
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Appendix 

Note: This syntax is from Dr. Bruce Thompson. 

* INSTRUCTIONS: First, make sure you have a subdirectory/folder 

on your "C:" drive named "C:\TEMP", and if you don't then create 

one. 

* Second, search for "???" within this syntax file and then make 

all the noted changes in order to analyze your own data. 

 

*(Q) How can I do an all-subsets regression using SPSS? 

     Whereas a stepwise regression yields one final equation, 

     the goal of all-subsets regression is to perform all possible  

     regressions combination of and then let the user (rather  

     than the stepwise regression) choose the "best" equation.  

*    So, if one had 5 independent variables, the all-subsets 

     regression would perform 5 regressions of each predictor 

     on y, and then work up towards one final regression with 

     all the predictors.  The output can be any number of things, 

     such as the r^2 for each equation, but I would rather use the  

     adjusted predicted variables that SPSS can already create. 

 

* (A) by rlevesque@videotron.ca 2001/08/30; 

SPSS Dedicated web site: 

http://pages.infinit.net/rlevesqu/index.htm. 

 

SET MPRINT=no. 

 

*/////////////////////////////. 

DEFINE !combine (n=!TOKENS(1)  

     /m=!TOKENS(1) 

     /dep=!TOKENS(1)  

     /indepv=!CMDEND). 
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/* Find all combinations on n items out of m */ 

/* August 30,2001 rlevesque@videotron.ca */ 

 

!DO !thisn=1 !TO !n 

NEW FILE. 

INPUT PROGRAM. 

LOOP i=1 TO !thisn. 

END CASE. 

END LOOP. 

END FILE. 

END INPUT PROGRAM. 

LIST. 

!LET !list=!NULL 

!DO !cnt=1 !TO !thisn 

     !LET !list=!CONCAT(!list," ","j",!cnt) 

!DOEND 

COMPUTE n=!thisn. 

* Calculate variable names for LOOP of the next WRITE command *. 

STRING cntname cntbeg(A8). 

COMPUTE cntname=CONCAT('j',LTRIM(STRING(i,F8.0))). 

* Calculate first parameter for the LOOP of the next WRITE 

  command *. 

DO IF i=1. 

COMPUTE cntbeg="1". 

ELSE. 

COMPUTE cntbeg=CONCAT('j',LTRIM(STRING(i-1,F8.0))," + 1"). 

END IF. 

* Calculate second parameter for the LOOP of the next WRITE 

  command *. 

COMPUTE k=!m - !thisn + i. 

FORMATS i k n(F8.0). 
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STRING quote(A1) strlist(A255). 

COMPUTE quote='"'. 

COMPUTE strlist=!QUOTE(!list). 

* Write the syntax file which will store all the combinations in 

the list.txt file*. 

WRITE OUTFILE "c:\temp\macro.sps"  

     /"LOOP "cntname"="cntbeg" TO "k".". 

DO IF i=!thisn. 

+     WRITE OUTFILE "c:\temp\macro.sps"  

     /"WRITE OUTFILE "quote"c:\temp\list.txt"quote "/" strlist "." 

+     LOOP cnt=1 TO !thisn. 

+          WRITE OUTFILE "c:\temp\macro.sps" /"END LOOP.". 

+     END LOOP. 

+     WRITE OUTFILE "c:\temp\macro.sps" /"EXECUTE.".  

END IF. 

EXECUTE. 

INCLUDE FILE="c:\temp\macro.sps". 

 

/* Convert data from list.txt to the corresponding sav file */. 

DATA LIST FILE='c:\temp\list.txt' LIST /!list. 

SAVE OUTFILE=!QUOTE(!CONCAT('c:\temp\list',!thisn,'.sav')). 

!DOEND 

/* Combine all the sav files */. 

GET FILE='c:\temp\list1.sav'. 

!DO !nb=2 !TO !n. 

ADD FILES FILE=*  

     /FILE=!QUOTE(!CONCAT('c:\temp\list',!nb,'.sav.')). 

!DOEND 

/* Eliminate duplicates  */. 

SORT CASES BY ALL. 

MATCH FILES FILE=* /BY=ALL /FIRST=first. 

SELECT IF first. 



©EIJEAS	2016	Volume:	2	Issue:	1,	60-81,	Ohio,	USA			
Electronic	International	Journal	of	Education,	Arts,	and	Science	
http://www.eijeas.com	
	

80	
	

SAVE OUTFILE='c:\temp\all_comb.sav'. 

/* Find name of last variables */ 

!DO !var !IN (!indepv) 

!LET !lastone=!var 

!DOEND 

VECTOR vnames(!m A8). 

!LET !cnt=!BLANK(1) 

/* Create variables containing the names of the indep variables */ 

!DO !var !IN (!indepv) 

COMPUTE vnames(!LEN(!cnt))=!QUOTE(!var). 

!LET !cnt=!CONCAT(!cnt,!BLANK(1)) 

!DOEND 

/* Construct the string containing the list of indep var of each regression */. 

STRING dep (A8) indepv(A255). 

COMPUTE dep=!QUOTE(!dep). 

VECTOR j=j1 TO !CONCAT('j',!n) /ind=vnames1 TO  

!CONCAT('vnames',!m). 

COMPUTE nvar=NVALID(j1 TO !CONCAT('j',!n)). 

LOOP cnt=1 TO nvar. 

COMPUTE indepv=CONCAT(RTRIM(indepv)," ",vnames(j(cnt))). 

END LOOP. 

* Write the syntax file which will run all regressions */. 

WRITE OUTFILE='c:\temp\syntax.sps' 

     /"!regres dep=" dep "indepv=" indepv ".". 

EXECUTE. 

!ENDDEFINE. 

*////////////////////////////. 

DEFINE !regres (dep=!TOKENS(1) /indepv=!CMDEND) 

REGRESSION 

  /MISSING LISTWISE 

  /STATISTICS COEFF OUTS R ANOVA 

  /CRITERIA=PIN(.05) POUT(.10) 
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  /NOORIGIN 

  /DEPENDENT !dep 

  /METHOD=ENTER !indepv . 

*discriminant 

  groups = !dep (1,2) / variables = !indepv / 

  analysis = !indepv / method = direct / statistics = table crossvalid .   

!ENDDEFINE. 

*////////////////////////////. 

*************************. 

* EXAMPLE OF USE. 

*************************. 

*??? 

     For regression, all possible subsets, change "n=" to 

the number of predictors. 

* Change "m=" to the number of predictors; change "dep=" 

to the name of the outcome variable within your dataset; 

change "indepv=" to the names of the predictor variables 

in your dataset. 

SET MPRINT=yes. 

****** Run the following macro to do the preparatory work. 

!combine n=8 m=8 dep=WSQ indepv=AGE Male Married INCOME LENGTH EXP 

CHANGE LOMS. 

execute. 

*??? 

* NOTE: The command below presumes that you put the data on 

a USB stick, and that the USB drive on your computer is "E:\" 

but it instead might be "F:\" or "G:\". 

  GET  

  FILE='C:\Users\kewang\Downloads\LOMS.sav'.  

DATASET NAME DataSet1 WINDOW=FRONT . 

INCLUDE FILE='c:\temp\syntax.sps'. 

execute. 


